Further Reading: Michael Faraday

General reading


Alan E. Jeffreys, Michael Faraday: A List of His Lectures and Published Writings, (London, 1960).

Published books by Faraday, mainly collections of papers and lecture notes, some published after his death:

Chemical Manipulation, Being Instructions to Students in Chemistry. (1827).

Experimental Researches in Electricity, Vol I, II & III (1837, 1844, 1855)

Experimental Researches in Chemistry and Physics (1859).

W. Crookes. ed. A Course of six lectures on the Various Forces of Matter (1860)

W. Crookes. ed. A Course of six lectures on the Chemical History of a Candle, (1861)


The liquefaction of gases (1896.)

Published texts by Faraday


The complete correspondence of Michael Faraday is currently being compiled. Five volumes have been published with the sixth in progress. Frank A.J.L. James, The Correspondence of Michael Faraday, (London, 1991-2008).

In-depth reading:


Henry Bence Jones, Life and Letters of Faraday, 1st and 2nd editions, 2 volumes, London, 1870


David Gooding, ‘Experiment and concept formation in electromagnetic science and technology in England in the 1820s’, History and Technology, 1985, 2: 151-176,


Bruce J. Hunt, The Maxwellians (Ithaca, 1991)


Frank A.J.L. James, ‘“the civil-engineer’s talent”: Michael Faraday, science, engineering and the English lighthouse service, 1836-1865’, Transactions of the Newcomen Society, 1999: 70: 153-60


José Romo and Manuel G. Doncel, ‘Faraday’s initial mistake concerning the direction of induced currents, and the manuscript of Series I of his Researches’, Archive for the History of the Exact Sciences, 1994, 47: 291-385.


Ryan Tweney, ‘Toward a Cognitive-Historical Understanding of Michael Faraday’s Research: Editor’s Introduction’, Perspectives on Science 2006, 14: 1-6,


Michael Faraday achieved his early renown as a chemist. He made many important contributions to chemistry. In 1820, Faraday produced the first known compounds made from carbon and chlorine, hexachloroethane (C2Cl6) and tetrachloroethene (C2Cl4). Michael Faraday provided evidence for this fact by applying pressure to liquefy chlorine gas and ammonia gas for the first time. These were till then believed to be “permanent gases,” or gases incapable of liquefaction. During ammonia liquefaction, Faraday also noted that when he allowed the ammonia to evaporate again, it caused cooling. Michael Faraday attended a local school until he was 13, where he received a basic education. To earn money for the family he started working as a delivery boy for a bookshop. He worked hard and impressed his employer.

Published by FamousScientists.org. Further Reading Alfred Marshall Mayer Henry and Faraday Popular Science Monthly, Volume 18, November 1880. More from FamousScientists.org: Jane Marcet. Michael Faraday, the son of an 18th Century blacksmith, became one of the greatest scientists of his age. One of his discoveries transformed the world and changed the way we live forever. Michael Faraday's most important and lasting contribution to science - and all our lives - was the invention of the electric motor. Through his work with electrolysis, Faraday became fascinated by electricity and magnetism, which at the time were thought to be separate forces. Modern physicists now recognize a single electromagnetic force. Below, there are some further resources if you would like to find out more about him and his work. Please Answer the Poll! Find out more Michael Faraday was one of the pioneers of modern electromagnetic theory. His work laid the foundation for the identification of light as an electromagnetic phenomenon, and led to the employment of electromagnetic waves in communication. It can also be argued that his discoveries resulted in some of the early speculation regarding the existence of the electron and the structure of the atom.