Real time quantitative PCR (qPCR) technology has revolutionized almost all areas of microbiology including clinical microbiology, food microbiology, industrial microbiology, environmental microbiology and microbial biotechnology. Various modifications and improvements have enhanced the overall performance of this highly versatile technology and the qPCR instrumentation and strategies currently available are more sensitive, faster and affordable than ever before.

Written by experts in the field and aimed specifically at microbiologists, this volume describes and explains the most important aspects of current qPCR strategies, instrumentation and software. Renowned authors cover the application of qPCR technology in various areas of applied microbiology and comment on future trends. Topics covered include instrumentation, fluorescent chemistries, quantification strategies, data analysis software, environmental microbiology, water microbiology, food microbiology, gene expression studies, validation of microbial microarray data and future trends in qPCR technology.

The editor and authors have produced an outstanding book that will be invaluable for all microbiologists. A recommended book for all microbiology laboratories.

Chapter 1. An Introduction to the Real-time Polymerase Chain Reaction (qPCR). Stephen A Bustin, Sara Zaccara and Tania Nolan
Chapter 2. Instrumentation and Fluorescent Chemistries Used in qPCR. Mathilde H. Jøsølsen, Charlotte Løfström, Trine Hansen, Eyjólfur Reynisson and Jeffrey Hoofar
Chapter 3. Quantification Strategies in Real-time RT-PCR (RT-qPCR). Michael W. Pfaffl
Chapter 4. Genex: Data Analysis Software. Mikael Kubista, Vendula Rusnakova, David Svec, Björn Sjögren and Ales Tichopad
Chapter 5. Quantification of Microorganisms Targeting Conserved Genes in Complex Environmental Samples Using qPCR. Claudia Goyer and Catherine E. Dandie
Chapter 6. Quantification of Microorganisms Using a Functional Gene Approach. Lia C.R.S. Teixeira and Etienne Yergeau
Chapter 7. Using qPCR for Water Microbial Risk Assessments. Jorge Santo Domingo, Mary Schoen, Nicholas Ashbolt and Hodon Ryu
Chapter 8. qPCR in Food Microbiology. Luca Cocolin and Kalliopi Rantissiou
Chapter 9. Studying Microbial Gene Expression in Complex Environmental Matrices Using RT-qPCR. Vijay J. Gadkar and Martin Filion
Chapter 10. RT-qPCR for Validating Microbial Microarray Data. Dan Tulpan, Michelle Davey and Mark Laflamme
Chapter 11. Future Trends in RT-qPCR Technology and Their Implication in Applied Microbiology. Vijay J. Gadkar and Martin Filion
MALDI-TOF Mass Spectrometry in Microbiology
Edited by: Markus Kostrzewa and Sören Schubert (Published: 2016)

Aspergillus and Penicillium in the Post-genomic Era
Edited by: Ronald P. de Vries, Isabelle Benoit Gelber and Mikael Rørdam Andersen (Published: 2016)

The Bacteriocins: Current Knowledge and Future Prospects
Edited by: Robert L. Dorit, Sandra M. Roy and Margaret A. Riley (Published: 2016)

Omics in Plant Disease Resistance
Edited by: Vijai Bhadauria (Published: 2016)

Acidophiles: Life in Extremely Acidic Environments
Edited by: Raquel Quatrini and D. Barrie Johnson (Published: 2016)

Climate Change and Microbial Ecology: Current Research and Future Trends
Edited by: Jürgen Marxsen (Published: 2016)

Biofilms in Bioremediation: Current Research and Emerging Technologies
Edited by: Gavin Lear (Published: 2016)

Microalgae: Current Research and Applications
Edited by: Maria-Nefeli Tsaloglou (Published: 2016)

Gas Plasma Sterilization in Microbiology: Theory, Applications, Pitfalls and New Perspectives
Edited by: Hideharu Shintani and Akikazu Sakudo (Published: 2016)

Virus Evolution: Current Research and Future Directions
Edited by: Scott C. Weaver, Mark Denison, Marilyn Roossinck and Marco Vignuzzi (Published: 2016)

Arboviruses: Molecular Biology, Evolution and Control
Edited by: Nikos Vasilakis and Duane J. Gubler (Published: 2016)

Shigella: Molecular and Cellular Biology
Edited by: William D. Picking and Wendy L. Picking (Published: 2016)

Aquatic Biofilms: Ecology, Water Quality and Wastewater Treatment
Edited by: Anna M. Romani, Helena Guasch and M. Dolors Balaguer (Published: 2016)

Alphaviruses: Current Biology
Edited by: Suresh Mahalingam, Lara Herrero and Belinda Herring (Published: 2016)

Thermophilic Microorganisms
Edited by: Fu-Li Li (Published: 2015)

Flow Cytometry in Microbiology: Technology and Applications
Edited by: Martin G. Wilkinson (Published: 2015)
“an impressive group of experts” (ProtoView)

Probiotics and Prebiotics: Current Research and Future Trends
Edited by: Koen Venema and Ana Paula do Carmo (Published: 2015)

Epigenetics: Current Research and Emerging Trends
Edited by: Brian P. Chadwick (Published: 2015)
“this is one text you don’t want to miss” (Epigenie); "up-to-date information" (ChemMedChem)

Corynebacterium glutamicum: From Systems Biology to Biotechnological Applications
Edited by: Andreas Burkovski (Published: 2015)
“Without question a valuable book” (BIOSpektrum)

Advanced Vaccine Research Methods for the Decade of Vaccines
Edited by: Fabio Bagnoli and Rino Rappuoli (Published: 2015)

Full details at www.caister.com
Real-time PCR is an extremely important technology, useful not only in food analysis, but also in gene expression analysis and many other applications in which the goal is not only to ask "what DNA is present" but also "how much". The Bio-Rad GMO Investigator kit is a popular tool for demonstrating PCR in the classroom. To teach the basics of real-time PCR in the classroom with the GMO Investigator kit, simply substitute the Taq polymerase master mix with iQ[®] SYBR[®] Green supermix, use strip tubes and optical flat caps, and amplify the reactions on a real-time Bio-Rad PCR instrument such as the MiniOpticon[®]. Although the GMO Investigator kit was developed for conventional. Real-time polymerase chain reaction allows researchers to estimate the quantity of starting material in a sample. It has a much wider dynamic range of analysis than conventional PCR. Quantitative real-time PCR can be readily applied to analysis of gDNA targets. Such studies may be genotyping/SNP determination, methylation analysis, screening transgenic sequences, or monitoring of insertions and deletions. Quantification and Analysis of mRNA Transcripts. A common application of qPCR is gene expression analysis, e.g., comparing the mRNA concentrations of a gene of interest between control and treated samples. Applied and Environmental Microbiology. Clinical Microbiology Reviews. Clinical and Vaccine Immunology. Quantitative PCR assays. PCR amplification was performed in 25-μl final volumes containing 5 μl of DNA or cDNA template, 0.2 μM of each respective primer, and 12.5 μl of SybrGreen Master Mix (Applied Biosystems). All the amplifications were carried out in optical-grade 96-well plates on an ABI Prism 5700 sequence detection system (Applied Biosystems) with an initial step at 95°C for 10 min followed by 40 cycles of 95°C for 15 s, 60°C for 1 min, and 72°C for 30 s. The CT was determined automatically by the instrument. Real-time PCR (QPCR) is a suitable technique that has been applied in the last few years to detect and quantify microorganisms associated with food.